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ABSTRACT

Scalable shared-memory multiprocessors (those with non-uniform memory
access times) are among the most flexible architectures for high-performance
parallel computing, admitting efficient implementations of a wide range of pro-
cess models, communication mechanisms, and granularities of parallelism. Such
machines present opportunities for general-purpose parallel computing that can-
not be exploited by existing operating systems, because the traditional approach
to operating system design presents a virtual machine in which the definition of
processes, communication, and grain size are outside the control of the user.
Psyche is an operating system designed to enable the most effective use possible
of large-scale shared memory multiprocessors. The Psyche project is character-
ized by (1) a design that permits the implementation of multiple models of paral-
lelism, both within and among applications, (2) the ability to trade protection for
performance, with information sharing as the default, rather than the exception,
(3) explicit, user-level control of process structure and scheduling, and (4) a ker-
nel implementation that uses shared memory itself, and that provides users with
the illusion of uniform memory access times.

This work was supported in part by NSF CER grant number DCR-8320136, Darpa'ETL contract
number DACA76-85-C-0001, and an IBM Faculty Development Award.
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ABSTRACT

Scalable shared-memory multiprocessors (those with non-uniform memory
access times) are among the most flexible architectures for high-performance
parallel computing, admitting efficient implementations of a wide range of pro-
cess models, communication mechanisms, and granularities of parallelism. Such
machines present opportunities for general-purpose parallel computing that can-
not be exploited by existing operating systems, because the traditional approach
to operating system design presents a virtual machine in which the definition of
processes, communication, and grain size are outside the control of the user.
Psyche is an operating system designed to enable the most effective use possible
of large-scale shared memory multiprocessors. The Psyche project is character-
ized by (1) a design that permits the implementation of multiple models of paral-
lelism, both within and among applications, (2) the ability to trade protection for
performance, with information sharing as the default, rather than the exception,
(3) explicit, user-level control of process structure and scheduling, and (4) a ker-
nel implementation that uses shared memory itself, and that provides users with
the illusion of uniform memory access times.

1. Introduction

The future of high-speed computing depends on parallel computing, which in turn is

limited by the scalability and flexibility of parallel architectures and software. For the past
five years, we have been engaged in the implementation and evaluation of systems software

and applications for large-scale shared-memory multiprocessors, accumulating substantial

experience with scalable, NUMA (non-uniform memory access time) machines. Based on this

experience, we are convinced that NUMA multiprocessors have tremendous potential to sup-

port general-purpose, high-performance parallel computing. We are also convinced that

existing approaches to operating system design, with a model of parallelism imposed by the

operating system, are incapable of harnessing this potential.

With the advent of multiprocessors, parallelism has become fundamental both to the

programmer's conceptual model and to the effective use of the underlying hardware. The

definition of processes, the mechanisms for communication and scheduling, and the protec-

tion boundaries that prevent unwanted sharing can no longer be left to the sole discretion of

the operating system. Since these concepts lie at the core of traditional operating systems,

shared-memory multiprocessors require a radically new approach, one that provides the user

with an unprecedented degree of control over parallelism, sharing, and protection, while lim-

iting the operating system to operations that must occur in a privileged hardware state.

We have designed and implemented an operating system called Psyche that embodies

this new approach. Our design incorporates innovative mechanisms for user-level schedul-

ing, authorization, and NUMA memory management. Its implementation provides the foun-

dation for an ambitious project in real-time computer vision and robotics, undertaken jointly



2

with the department's vision and planning researchers. In the vision lab and elsewhere,
Psyche offers a level of support for multi-model parallel computing unmatched by previous
systems.

The Psyche design is the direct outgrowth of five years of hands-on experience with
multiprocessor systems and applications. This paper traces the evolution of that design, giv-
ing the rationale for our major design decisions and describing how the results achieve our
goals of user flexibility and efficient use of NUMA hardware.

2. Motivating Experience
The Computer Science Department at the University of Rochester acquired its first

shared-memory multiprocessor, a 3-node BBN Butterfly® machine, in 1984. Since that time,
departmental resources have grown to include four distinct varieties of Butterfly (one with
128 nodes) and an IBM ACE multiprocessor workstation. From 1984 to 1987, our work could
best be characterized as a period of experimentation, designed to evaluate the potential of
NUMA hardware and to assess the need for software support. In the course of this experi-
mentatiun we ported three compilers to the Butterfly, developed five major and several minor
library packages, built two different operating systems, and implemented dozens of applica-
tions. A summary of this work can be found in [161.

2.1. Architecture
As we see it, the most significant strength of a shared-memory architecture is its abil-

ity to support efficient implementations of many different parallel programming models,
encompassing a wide range of grain sizes of process interaction. Local-area networks and
more tightly-coupled multicomputers (the various commercial hypercubes, for example) can
provide outstanding performance for message-based models with large to moderate grain
size, but they do not admit a reasonable implementation of interprocess sharing at the level
of individual memory locations. Shared-memory multiprocessors can support this fine-
grained sharing, and match the speed of multicomputers for message passing, too.

We have used the BBN Butterfly to experiment with many different programming
models. BBN has developed a model based on fine-grain memory sharing [26]. In addition,
we have implemented remote procedure calls [151, an object-oriented encapsulation of
processes, memory blocks, and messages [7], a message-based library package [13], a
shared-memory model with numerous lightweight processes [24], and a message-based pro-
gramming language 123].

Using our systems packages, we have achieved significant speedups (often nearly
linear) on over 100 processors with a range of applications that includes various aspects of
computer vision, connectionist network simulation, numerical algorithms, computational
geometry, graph theory, combinatorial search, and parallel data structure management. In
every case it has been necessary to address the issues of locality and contention, but neither
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of these has proven to be an insurmountable obstacle.' Simply put, a shared-memory riiul-
tiprocessor is an extremely flexible platform for parallel applications. The challenge for
hardware designers is to make everything scale to larger and larger machines. The chal-
lenge for systems software is to keep the flexibility of the hardware visible at the level of the
kernel interface.

Each of our programming models on the Butterfly was implemented on top of BBN's
Chrysalis operating system. We have been successful in constructing these implementations
primarily because Chrysalis provides for user-level access to memory-mapping operations,
interlocked queues, block transfers, and similar low-level facilities. Unfortunately, Chrysalis
imposes a heavyweight process model that cannot be circumvented. Lightweight processes

can be simulated with coroutines inside a heavyweight process, but without the ability to
invoke kernel operations or to interact with other kinds of simulated processes independent
of their peers. In addition, the usefulness of the Chrysalis memory-mapping operations is
compromised by their relatively high cost and by the lack of uniform addressing. Finally,
Chrysalis provides little in the way of protection, and could not easily be modified to do more
without significantly reducing the efficiency of its low-level operations.

2.2. Programming Models

A major focus of our experimentation with the Butterfly has been the evaluation and
comparison of multiple models of parallel computing [3,12,16]. Our principal conclusion is
that while every programming model has applications for which it seems appropriate, no sin-
gle model is appropriate for every application. In an intensive benchmark study conducted in

1986 [31, we implemented seven different computer vision applications on the Butterfly over
the course of a three-week period. Based on the characteristics of the problems, program-

mers chose to use four different programming models, provided by four of our systems pack-

ages. For one of the applications, none of the existing packages provided a reasonable fit, and
the awkwardness of the resulting code was a major impetus for the development of yet
another package [241. It strikes us as highly unlikely that any predefined set of parallel pro-
gramming models will be adequate for the needs of all user programs.

In any environment based on memory sharing, we believe it will be desirable to employ

a uniform model of addressing. Even if the programmer must deal explicitly with local cach-
ing of data, uniform addressing remains conceptually appealing. It is, for example, the prin-
cipal attraction of the Linda programming languages [10]. The Linda "tuple space" is not a
conventional shared memory. Its operations are not transparent, nor are they efficient

enough to be used for fine-grained sharing. The tuple space does, however, allow processes to
name data without worrying about their location. In our own experience, BBN's Uniform

I Contention in the switching network has not proven to be a problem [21]. Locality of memory
references and contention for memory banks are facets of the general memory-management problem for
NUMA machines (what we call the "NUMA problem"). We are investigating strategies to address this
problem [2,9,14], but they are beyond the scope of this paper.
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System [26] is the most popular programming package on the Butterfly for much the same

reason. Its single address space allows data items, including pointers to be copied from the

loce.l memory of one process to that of another without any intermediate translation. The

fact tbt ordinary assignments and variable references can be used to effect the copies makes

the global name space even more attractive.

We have found it parficularly useful to establish sharing relationships at run time.

Low-cost establishment of sharing is also important, as is the ability to share things of arbi-

trary size. Among the existing environments on the Butterfly, the Uniform System provides

the highest degree of support for dynamic, fine-grain sharing - a shared he.p in a single

address space with a parallel allocator. There is a conflict, however, between protection and

performance: data visible to more than one process can be written by any process. It may be

possible under certain programming models to provide compiler-enforced protection at a very

fine granularity with little or no run-time cost. Others have adopted this approach in the

context of "open" operating systems [6, 25]. For us to count on compiler protection, however,

would be inconsistent with the desire to support as many programming models as possible,

particularly with multiple users on a single parallel machine. We are therefore careful to

distinguish between the notion of a single address space (which we reject) and that of uni-

form addressing, in which there are multiple address spaces, each containing a potentially

different subset of the data in the world, but each individual datum has a unique address

that is the same in every address space that includes it.

Clearly any programmer who wants to ignore protection or to provide it with a com-

piler for a "safe" language should be free to do so, and should pay no penalty for the protec-

tion needs of others. When desired, however, the operating system should also provide pro-

tection, even if it can only do so with page-size granularity and with the overhead of kernel

intervention when protection boundaries are crossed. In order to pay this overhead as infre-

quently as possible, we believe it will be desirable to evaluate access rights in a lazy fashion,

so that processes pay for the things they actually share, rather than the things they might

potentially share. We therefore distinguish between the distribution of access rights (which

must be cheap) and the exercise of those rights.

Other researchers have recognized the need for multiple models of parallel computing.

Washington's Presto project [1l, for example, supports user-definable processes and commun-

ication in a modular, customizable, C++ library package. Presto is not an operating system;

it is linked into the code for a single application (written in a single language), and provides

no protection beyond that which is available from the compiler. At the operating system

level, the Choices project at Illinois [4] allows the kernel itself to be customized through the

replacement of C++ abstractions. The University of Arizona's x-Kernel [11] adopts a similar

approach in the context of communication protocols for message-based machines. Both

Choices and the x-Kernel are best described as reconfigurable operating systems; they pro-

vide a single programming model defined at system generation time, rather than supporting

multiple models at run time. We are unaware of any project that provides kernel-level pro-

tection and run-time flexibility comparable to that of Psyche.
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3. Evolution of the Psyche Design

Motivated by our experience with the Butterfly, the Psyche project has from the begin-

ning stressed two fundamental goals: to provide users of the kernel interface with an unpre-

cedented level of programming flexibility, and to permit efficient use of large-scale NUMA

machines. Implicit throughout has been the assumption that the kernel must also provide a

high degree of protection to those applications that require it.

Original goals:

User flexibility

Efficient use of NUMA hardware

(Protection without compiler support)

These first two goals are complementary. Flexibility is the most significant feature of NUMA

User flexibility Efficient use of NUMA hardware

Low-level kernel interface

Multiple programming models

Shared name space Dai btato
Protection/performance tradeoffKDynamic sharing Reads, writes, and calls

Sharing as the default as fundamental

\ Lazy evaluation / Sharing of data structures

of protection betwee the kernelandthe user

Unorm virtual Avoidance of kernel / Access faults as

address space intervention / kernel entry mechanism

Keys and access lists Upcalls for user-level

First-class( scheduling

Protection user-level threads Conventions for blocking
without compiler support and unblocking threads

Orthogonal processes
and protection domains

Figure 1: Evolution of Psyche Design Decisions
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machines, and the one most difficult to exploit. Our emphasis on flexibility has determined

the style of our kernel interface and the abstractions it provides. Our emphasis on hardware

exploitation has underlined the importance of efficiency, and has played a dominant role in

implementation strategy.

The development of our ideas is summarized in figure 1. Each cf the major design

decisions visible to the user can be seen as the outgrowth if more basic concepts. tracing back

to project goals. The text of this section serves as commentary on the figure, portions of

which are reproduced along with the corresponding discussion.

User flexibility
-- op Lowlevl kenelinterface

Efficient use of NUMA hardware)

There are two principal strategies by which an operating system can attut~ipt to pro-

vide both efficiency and user flexibility. One is to implement a variety of programming

models directly in the kernel. This strategy has the advantage of allowing unsophisticated

programmers to use the kernel interface directly. It suffers, unfortunately, from a tendency

toward the "kitchen sink" syndrome; no small set of models will satisfy all users, and even

the smallest deviations from predefined abstractions can be very difficult to obtain (see [7]

and [22] for examples). A more attractive approach is to implement a set of primitive build-

ing blocks on which practically anything can be built.

We decided very early that Psyche would have a low-level kernel interface. In some

sense this places us in the tradition of the "minimal" kernels for distributed operating sys-

tems such as Accent [19], Charlotte [8], and V [5]. Our emphasis, however, is different.

Message-passing kernels provide a clean and narrow interface at a relatively high levei of

abstraction. By confining the kernel to lower-level operations, we can cover a much wider

spectrum of programming models with an equally clean and narrow interface. (See figure 2;.

We do not rxpect everyday programmers to use the Psyche interface directly. Rather,

we expect that they will use languages and library packages that implement their favorite

programmhing models. The purpose of the low-level interface i5 to allcw now packages to be

written on demand (by somewhat more sophisticated programmers), and to provide well-

defined underlying mechanisms that can be used to communicate between models when

desired.
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'Minimal' message-passing interface

'Kitchen sink' interface

Depth of

abstractions

N Breadth of abstractions

Figure 2: Levels of Kernel Interface

Multiple programming models

User flexibilif Shared name space

Dynamic sharing ) -a Uniform virtual address space

Sharing as the default/

Our commitment to user flexibility is manifested primarily in the need for multiple
programming models and in an emphasis on sharing. This emphasis on sharing has in turn
led us to establish the convention of uniform addressing. If processes are to share pointers,
then any data object visible to two different processes must appear at the same virtual
address from each point of view. Moreover, any two data objects simultaneously visible to
the same process must have different virtual addresses from that process's point of view.
Satisfying these constraints is an exercise in graph coloring. Since the graph may change at
run time (as sharing relationships change), the only general solution is one in which every
data object has its own color - its own unique address. On existing 32-bit machines, of
-,rse, the available virtual address space is likely to be too small to hold all user progranms

at once, but simple heuristics based on a priori knowledge about some of the graph nodes can
be used to overlap large amounts of space while maintaining for the user the illusion of uni-
form addressing. We discuss these heuristics in section 5.3.



Multiple programming models IData abstraction

Efficient use of NUMA hardware Reads, writes, and calls asfundamentai
Protection/performance tradeoff

If programmers are to implement multiple programming models outside the kernel,

they must be provided with tools for building abstractions. This is particularly true if the

implementations of different models are to be similar enough in conception to allow their

processes to interact. To allow user-level code to execute efficiently, it is also important that

the abstraction-building tools reflect the characteristics of the underlying hardware. We
have therefore adopted the concept of data abstraction as the fundamental building block in

Psyche. Programmers are accustomed to building sequential applications with abstract data

types. In our experience with parallel systems, we have found data abstractions (with

appropriate synchronization) to be well-suited to parallel applications as well. Not only do

they provide a natural means of expressing communication, they also permit an implementa-

tion based on ordinary data references and subroutine calls, the most primitive and efficient

operations on a shared-memory multiprocessor.

In Psyche, a data abstraction is known as a realm. Together with its data, each realm

includes a protocol. The intent is that the data should not be accessed except by obeying the

protocol. Invocation of the protocol operations of shared realms is the principal mechanism

for communication between processes in Psyche. A concurrent data structure (a 2-3 tree for

example) can be built from a node abstraction with appropriate read and write locks. A mon-

itor or a module protected by path expressions is by nature a data abstraction; its entry pro-

cedures are its protocol. A message channel or mailbox can also be built as a realm. Its pro-

tocol operations control the reading and writing of buffers. For connectionless message pass-

ing, each individual message may b, realized as a realm, "sent" and "received" by changing

access rights.

To protect the integrity of realms, the kernel must be prepared to ensure that protocols

are enforced. It must not, however, insist on such enforcement. Some applications may not

care about protection. Others may provide it with a compiler. Psyche therefore provides an

explicit tradeoff between protection and performance. Realms are grouped together into

(often overlapping) protection domains. Invocations of realm operations within a protection

domain are optimized - as fast as an ordinary procedure call. Invocations between protec-

tion domains are protected - as safe as a remote procedure call between traditional heavy-
weight processes. In the case of a trivial protocol or truly minimal protection, Psyche also

permits direct external access to the data of a realm, through in-line invocations. In all

cases, the Psyche invocation mechanism is an ordinary data reference or a jump-to-

subroutine instruction.
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Dynamic sharing

Efficient use of I Lay evaluation of protection ) Access faults as
NUMA hardware \Avoidance of kernel intervention / kernel entry mechanism

A keri,pl call by its very nature requires a context switch into and out of the operating

system. Optimizing this context switch is a common goal of computer architecLs and kernel
designers, but even the most trivial kernel call inevitably costs significantly more than a sub-
routine call and return. Extremely fine-grain interactions between processes must therefore

occur without kernel intervention. The elimination of both explicit kernel calls and implicit
kernel operations is important to Psyche's goal of maximal hardware utilization. Further-
more, functionality provided outside the kernel can be changed more easily than functional-
ity inside the kernel, an advantage in keeping with our goal of user flexibility. As in several
"minimal" message-based kernels, we are implementing device management, file systems,

virtual memory backing store, and network communications in user-ievel software. We also

permit interprocess communication to be implemented outside outside the kernel, along with
the bulk of scheduling.

As explained above, we believe that for the sake of efficient dynamic sharing it is desir-

able to delay the evaluation of access rights as late as possible, and to cache those rights once
they have been established. We therefore wait until a process actually attempts to touch a

realm before verifying its right to do so. Since a valid access cannot be distinguished from an
invalid one until this verification has orcurred, initial references to realms appear to the ker-

nel as access faults - invalid reference traps from the addres. -translation hardware.

Psyche's access-fault handler is the most important kernel entry point. It must distin-

guish between a large number of possible situations. Like most operating systems, Psycht,

use.s access faults to implement demand paging. It also uses them to implement page migra-

tion to maximize locality on NUIMA multiprocessors. 2 Both of these functions are semanti-
cally invisible. From the point of view of the user-level programmer, there are only three
possibilities:

(1) The reference may truly be invalid. Its virtual address may not refer to any realm at

all, or it may refer to a realm to which access is not permitted. These two cases are
indistinguishable to the user.

(2) The reference may be valid, but may refer to a realm that has not been accessed before.

(3) The virtual address may refer to a realm that may only be accessed through protected

invocations.

2 The Psyche memory management system is described ' . a companion paper [141.
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Case (2) provides the hook for lazy evaluation of access rights. If optimized or in-line invoca-
tions are permitted, the referenced realm is added to the current memory map. We say that

the realm has been opened for optimized access. The faulting instruction is restarted.

Future invocations will proceed without kernel intervention. They will, in fact, be ordinary

subroutine calls. If protected invocations (only) are permitted, the kernel arranges for the
calling process to move to another protection domain, in which it may execute the requested

operation. It also makes a note to itself indicating that the realm has been opened for pro-

tected access. Future invocations from the same protection domain will fall under case (3)
above, and will not cause a re-evaluation of access rights.

In all cases, protected and optimized, invocations are requested by executing ordinary

subroutine call instructions (or data references, in the case of in-line invocations). Since pro-

tected and optimized invocations look the same, the choice between them can be made simply

by modif)ing access rights (at run time) without rewriting code or recompiling. In effect,

Psyche has separated the issues of protection and performance from the semantics of realm
invocation. In a program that never attempts to circumvent realm protocols, protection lev-

els can be changed without changing the appearance or behavior of the program.

Avoidance of kernel intervention

Lazy evaluation of protection No* Sharing of data structures/between the kernel and the usei
Reads, writes, and calls as fundamentalb

Psyche places a heavy emphasis on sharing of data structures between the kernel and

the user. This sharing is consistent with our desire to perform work only when we know it is
necessary, to perform it outside the kernel whenever possible, and to express it in terms of

ordinary data access. Shared data structures allow the user to obtain useful information
without asking the kernel explicitly. For example, the kernel maintains information (read-

only in user space) that identifies the current processor, current protection domain, current

process, and time of day. Future extensions might include run-time performance statistics or

referencing information of use to user-level migration strategies. In a similar vein, user-level

code can provide information to the kernel without performing kernel calls. Shared data

structures are used to specify access rights, control scheduling mechanisms and policy, set
wall time and countdown timers, and describe the operation interface supported by each

realm.

Explicit transfers of control between the user and the kernel occur only when synchro-

nous interaction is essential. Kernel calls exist to create and destroy realms, return from
protected invocations, and forcibly revoke rights to a realm that has been opened by another

protection domain. In the other direction, the kernel provides upcalls to user-level code in

response to various error conditions, and whenever a user-level scheduling operation is

required. The latter case covers calls and returns from protected invocations, expiration of

timers, and imminent end of a scheduling quantum.
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i p First-class user-level threads
Avoidance of kernel intervention/

Many parallel algorithms are most easily realized with a very large number of light-

weight processes, or threads. For reasons of both semantics and efficiency, it is important

that these threads be implemented outside the operating system. No single kernel-provided

process abstraction is likely to meet the needs of such diverse languages as Ada, Emerald,
Lynx, MultiLisp, and SR. Different programming models include different ideas about where
to place stacks (if any), what state to save on context switches, how to schedule runnable

threads, and how to keep track of unrunnable threads. Moreover, no kernel is likely to pro-
vide the performance of user-level code to create, destroy, block, and unblock threads.
Operating systems such as Mach [18] and Amoeba [17] have attempted to reduce the cost of
process operations by separating the scheduling abstraction from the address-space abstrac-
tion, but the result is still significantly less efficient than the typical implementation of user-

level threads.

With a traditional operating system it is always possible to implement lightweight

threads inside a single heavyweight kernel process, but the operating system is then unable
to treat these threads as first-class entities. They cannot run in parallel and they cannot
make use of kernel services (e.g. blocking operations) independent of their peers. Psyche

addresses this problem with a novel approach to first-class, lightweight, user-level threads.

First-class user-level threads N Orthogonal processes

t'rotec ion without compiler support ) and protection domains

A process in Psyche is an anthropomorphic entity that moves between protection

domains as a result of protected invocations. A thread is the realization of a process within a
given protection domain. As a process moves among domains, it may appear as many dif-

ferent kinds of threads. In one domain it may be an Ada task. In another domain it may be
an Actor or a MultiLisp future. In a simple server domain there may be no recognizable
notion of thread at all; processes may be represented over time by the actions of a state
machine. The kernel keeps track of which processes are currently in which protection

domains, but it knows nothing about how the threads that represent those processes are
scheduled inside those domains. It does not keep track of process state. Threads are created,

destroyed, and scheduled in user-level code. The kernel assists by providing upcalls when-
ever scheduling decisions may be required.

To bootstrap Psyche, the kernel creates a single primordial realm in a single protection

domain, containing a single user-level process. This process executes code to create addi-
tional realms. Creating a realm also implicitly creates a protection domain, of which the
created realm is said to be the root. Protected invocations of realm operations cause the
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current process to move to the protection domain of which the realm is the root. Among the

arguments to the make-realm operation is a specification of the number of processes in the

domain that should be allowed to execute simultaneously. The kernel creates this many

activations of the domain. Users for the most part need not worry about activations. They

serve simply as placeholders for processes that are running simultaneously. In effect, they

are virtual processors. From the user's point of view, Psyche behaves as if there were one

physical processor for each activation.

On each node of the physical machine, the kernel time-slices between activations

currently located on its node. A data structure shared between the kernel and the user con-

tains an indication of which process is being served by the current activation. This indication

can be changed in user code, so it is entirely possible (in fact likely) that when execution

enters the kernel the currently running process will be different from the one that was run-

ning when execution last returned to user space.

To implement a protected invocation of a realm operation (see figure 3), the kernel (1)

makes a note that the invoking process has moved to the protection domain rooted by the tar-

get realm of the invocation, (2) provides an upcall to some activation of that domain, telling it

that the process has moved and asking it to perform the realm operation, and (3) provides an

CALLING DOMAIN CALLED DOMAIN

jsr

fault into kernel

reqchedule upcall invocation upcall (copying parameters)

(create thread) jsr

(execute operation)

4 return

return kernel call
return upcall

(copying results) N

(destroy thread)

Figure 3: Protected Invocation
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upcall to the activation that had been running the process, telling it that the invocation is
indeed protected, that the process has moved to another protection domain, and that some-

thing else could run in the meantime. The target activation (if multi-threaded) creates a new

thread of an appropriate kind to execute the requested operation on behalf of the newly-

acquired process. The thread is initialized in such a way that when it returns from the
operation it will execute a return-from-invocation kernel call. At that point, the kernel

will look in its internal data structures to see which domain the process came from, and pro-

vide some activation of that domain with an upcall indicating that the process has returned.

A simplistic, single-threaded protection domain (similar to a traditional Unix process) can

choose to ignore the reschedule and return upcalls. In this case the activation simply blocks

until the invocation has completed.

For both the invocation and the return, the kernel copies parameters from one protec-

tion domain to the other. It assumes that the parameters can be found at a predefined offset
from a predefined register (commonly used as the stack pointer). The sizes of the parameters

are defined in the user/kernel data structure that describes the interface of the invocation's

target realm. In parameters are copied into the upcall stack of the target activation. That

activation may choose to copy the parameters into space belonging to the newly-created

thread, or it may simply reassign the upcall stack to the thread, so that the kernel's copy

operation is the only one required. When the invocation returns, the kernel copies out

parameters back into the frame of the invoking thread. Reference parameters are treated

the same as pointer value parameters; the callee must possess appropriate rights in order to

dereference them.

Process names are ordered pairs consisting of the name of the protection domain in

which the process was created and a serial number managed by user-level code. When exe-

cution enters the kernel, it is therefore possible to distinguish between a newly-created pro-

cess (created in user space!), a process already known to be in the current domain, or a bogus

claim to be a process that cannot be in the domain. The latter case has occurred when (1) the
process name indicates that it was created elsewhere, but the kernel has no indication that it

moved to the current domain, or (2) the process name indicates that it was created in the

current domain, but the kernel has a note indicating that it subsequently moved to some

other domain. Otherwise, the kernel takes th& word of the user regarding which process is

currently running. In fact, the process name variable written by the user constitutes the

definition of which process is currently running.
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First-class user-level threads --o Upcalls for user-level scheduling

\Conventions for blocking and unblocking threads

To switch between processes in user mode, the user need only change the current pro-

cess name. In most cases, the user will want to save and restore registers and other state as

well (as part of a context switch between threads), but the kernel imposes no such require-

ments. To permit time slicing, the kernel implements both wall clock and interval timers for

each domain activation. Each time the clock ticks, the kernel's interrupt handler decrements

the interval timer value in the data structures of the current activation. If the value reaches

zero, it provides a timer upcall to the activation It also provides an upcall if the current time

exceeds the activation's wall clock timer value. The interval timer counts down and the wall

clock timer is checked only when the activation is actually running. The activation is there-

fore guaranteed to get an interval timer upcall as soon as the specified amount of actual exe-

cution has elapsed, and a wall clock timer upcall no later than the beginning of the next

activation quantum after the specified time is reached.

Since realms may be shared (for optimized access) by protection domains whose

processes are realized as different kinds of threads, Psyche users are encouraged to follow a

convention that permits threads of different kinds to block and unblock each other. Pointers

to block and unblock routines can be found in the user/kernel shared data structures for each

protection domain. To illustrate the use of these rouLines, consider a realm that implements

a bounded buffer between threads of different kinds. The code for the insert operation will

check to see whether the buffer is currently full. If it is, it will look through the data struc-

tures of the current protection domain to find the block and unblock routines appropriate for

the current kind of thread. It will then write the pointer to the unblock routine into the syn-

chronization data structures of the buffer and call the block routine. When some other

thread (possibly of a different kind) removes an element of the buffer, it will examine the

synchronization data structures, discover that the first thread is waiting to continue, and call

its unblock routine. If the buffer is shared between protection domains that trust each

another, the block and unblock routines may be available for optimized invocation. Every-

thing still works, however, if they require protected invocation. Insert and delete operations

will still complete very quickly when the buffer is neither full nor empty.

Summarizing the Psyche model, memory consists of a uniform address space divided

into realms. Each realm is the root of a single protection domain, which may encompass

other realms as well. Processes are anthropomorphic entities that move around between pro-

tection domains executing code on behalf of user applications. Processes run on virtual pro-

cessors called activations, which are created in numbers adequate to provide user-specified

levels of true parallelism within protection domains. Execution and context switching of

processes by a single activation proceeds without kernel intervention until an attempt is

made to access something not in the address space (or view) of the current protection domain.

The kernel then either (1) announces an error, (2) opens the accessed realm for optimized or
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protected invocation, as appropriate, or (3) effects a protected invocation by moving the

current process to the protection domain rooted by the accessed realm.

Sharing as the default Keys and access lists

Lazy evaluation of protection)

Each realm includes an access list consisting of <key, right> pairs. The right to invoke

an operation of a realm is conferred by possession of a key for which appropriate permissions

appear in the realm's access list. A key is a large uninterpreted value affording probabilistic

protection. The creation and distribution of keys and the management of access lists are all

under user control.

When a thread attempts to invoke an operation of a realm for the first time, the kernel

performs an implicit open operation on behalf of the protection domain in which the thread is

executing. In order to verify access rights, the kernel checks to see whether the thread

possesses a key that appears in the realm's access list with a right that would permit the

attempted operation. Once a realm has been opened from a given protection domain, access

cncks are not performed for individual realm invocations, even those that are protected (and

hence effected by the kernel).

Rights contained in access lists include: initialize realm (change protocol), destroy

realm, invoke protected, invoke optimized (or in-line), and invoke optimized read-only.

The user/kernel data structure for each thread contains a pointer to the key list to be

used when checking access rights. When a fault occurs, the kernel matches the key list of

the current thread against the access list of the target realm. Since matching occurs only

when realms Are opened, any cost incurred will usually be amortized over enough operations

to make it essentially negligible. Moreover, we believe that in most cases either the key list

or the access list will be short. Our current implementation of the matching operation is

based on hashing, and consumes expected time linear in the size of the shorter list. In cases

where multi-way matching is expected to be unacceptably slow, programmers have the option

of calling an explicit open operation, with explicit presentation of a key.

Psyche keys constitute a compromise between traditional capabilities and traditional

access lists, providing most the advantages of both while avoiding their disadvantages. If one

imagines an access matrix with rows for protection domains and columns for realms, a key

can be associated with an equivalence class consisting of arbitrary entries in the matrix. In a

capability system, adding a protection domain to a class requires time linear in the number

of realms in the class. In an access list system, adding a realm to a class requires time linear

in the number of protection domains in the class. Under both approaches the amount of

space required to represent the class is quadratic. With Psyche-style keys, the addition or

deletion of protection domains or realms in an equivalence class requires constant time, and

the total amount of space required to represent the class is linear. Since the value of a key

depends on neither the holder nor on the realm(s) to which it confers rights, it is possible to
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(1) possess a key that grants rights to a large number of realms, (2) change the rights con-

ferred by a key without notifying the holder(s), and (3) change the holders of a key without

notifying the realm(s) to which the key grants access. Moreover, the use of probabilistic pro-

tection allows the operations affecting access rights to occur without the assistance of the

kernel. While it is not in general possible to prevent a thread from passing its keys on to a

third party, we see no way to avoid this problem in any scheme that transfers rights between

protection domains without the kernel's help.

One characteristic of the Psyche protection scheme is that keys and access lists control

the right to open a realm for access from a given protection domain, not the right to access it

per se.' The distinction is moot when distributing new rights, but is very important when

revoking rights. Removing a key from a key list or a key/right pair from an access list

prevents that key or pair from being used to open a realm in the future. It does not prevent

continued access to realms that have already been opened. For users who require hard revo-

cation of rights, Psyche provides an explicit revoke kernel call. Revoke is a potentially

expensive operation. To implement it, the kernel keeps track of which keys and access list

entries were used to perform each open operation.

4. The Psyche Kernel Interface

Figure 4 contains a diagram of Psyche data structures shared between the kernel and

the user. The umagic locations" at the left of the figure behave as read-only pseudo-registers.

The current-domain and current-activation pointers are changed by the kernel on context

switches between activations. By following pointers, both the kernel and user can find any of

the data structures associated with a protection domain or activation.

Each realm is represented by a data structure containing its access list and a descrip-

tion of the interface to its protocol operations. The make-realm kernel call allocates space

for this data structure and for the corresponding protection domain and activation data

structures. It is the user's responsibility to allocate the remaining data structures out of the

data space of the newly-created realm. The kernel keeps a mapping, invisible to the user,

that allows it to find the realm data structure given a pointer to anything inside the realm.

This permits it to consult the protocol description when performing a protected invocation.

The separation between activation and thread data structures, with the former point-

ing to the latter, is purely a matter of convenience. Each activation runs only one thread at a

time. We have put into the activation data structure the information we think the user is

most likely to want to leave the same when changing between threads (and the processes

they represent) and have put into the thread data structure the information we think the

user is most likely to want to change when changing threads. To permit the coexistence of

3 It would be feasible to check access rights on every protected invocation. We have chosen not to
do so because (1) it would add a noticeable amount of overhead to every such invocation, and more
importantly (2) it would introduce a semantic difference between optimized and protected invocations,
something we want very much to avoid.
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current activation - current thread - saved registers
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REALM

access list

interface description TI]
Figure 4: User/Kernel Shared Data Structures

different kinds of threads in a single protection domain, we have chosen to identify block and

unblock routines with the thread being executed by the current activation, rather than with

the current protection domain.

Complete utilization of the upcall and data structure interface to the kernel requires a

sophisticated body of user-level code. Since much of the generality of the interface will not be

needed by simple applications, Psyche defines default behavior to cover cases in which some

or all of the upcalls are not wanted, or in which pieces of the shared data structures are not

provided. A realm that serves as a simple shared memory block, for example, may be

accessed solely through in-line invocations. It has no protocol operations of its own. Its pro-
tection domain is never used. It has no activations. The only portions of figure 4 that will

actually appear are the boxes labeled domain, realm, and access list, and the latter will be

trivial. The total space required for kernel/user data structures will be on the order of 50
bytes. Since these data structures are writable in user space, they can share a page with

realm data.
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Psyche provides the following principal kernel calls:

make-realm - Takes as parameters the desired amount of code and data space, the desired
number of activations, and a so-called "master key." Returns pointers to the code

space, the data space, and the realm, domain, and activation data structures. The

master key can be used by the creator of the realm to initialize both code (which is nor-
mally read-only) and data. Program loaders are outside the kernel, and may be
integrated with external pagers.

destroy-realm - Takes as parameters a pointer to a realm and a key that should authorize

destruction.

return-from-invocation - Takes as parameters the values that would be in the frame

pointer and function return registers if we were returning from a subroutine. The ker-

nel can tell where to return to (and what return parameters to copy) by examing the
current-process pointer in shared data structures.

block-pending-upcalls - Takes no arguments. Blocks the current activation until an

upcall is received.

open-realm - Requires an explicit key. Provided for users who want to avoid implicit

searching of key lists.

close-realms - Takes as parameters a list of open realms. The open realm list data struc-

ture in figure 4, if allocated by the user, is used by the kernel to list all open realms
and the circumstances under which they Were opened. Users can use this information

to decide when to perform close operations.

invoke-protected - Provided for users who want to make sure they use a protected invoca-

tion, even if they have a key that would permit optimized invocation.

revoke - Takes as parameter an access list entry and a pointer to a realm. Forcibly closes

the realm in any protection domain that used the access list entry to open it. Requires

a key conferring revocation rights.

A small number of additional calls are provided for 1/0, external pagers, "ownership,"

and "attachment." The external pager mechanism is similar in spirit to that provided in
Mach [28], but with an interface based on shared memory instead of message passing. The

cwnership mechanism allows automatic reclamation of realms that are no longer needed.
The ownership graph is a DAG; we destroy any realm whose owners have all been destroyed.

Tr.p attachment mechanism reduces the cost of obtaining access to a multi-realm data struc-

ture. If realm B is attached to realm A, then B is automatically opened for access from any
protection domain that opens A.

Psyche's kernel-provided upcalls include:

invocation - Provides an indication of the calling realm, domain, and process, the desired

operation, and its arguments.

reschedule - Indicates that the current process has moved temporarily to another protec-

tion domain.
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return-from-invocation - Indicates that a process has returned and may proceed.

interval-timeout, wall-time-alarm - Indicates that a countdown or wall-time timer has

elapsed.

end-of-quantum - Indicates that preemption of the current activation will occur after a

brief (implementation-dependent) delay. The activation is guaranteed this amount of

execution time in which to perform any desired clean-up operations. The end-of-

quantum warning permits the use of such mechanisms as spin locks in user-level code,

without worrying about untimely preemption.

fault - Indicates that some detectable program error has occurred. Examples include

invalid references and arithmetic faults.

Additional upcalls are provided for external pagers and 1/0 notifications.

Upcalls never return. They are analogous to signals in Unix, except that they -:e a

special stack to avoid interference with the storage management mechanisms used by user-

level threads. Before making an upcall, the kernel saves the machine state (registers) of the

currently-running thread in the appropriate data structure in user space. Upcalls can be dis-

abled temporarily by setting a flag in the data structure of the current activation. The kernel

queues upcalls (other than faults) until they are enabled. A fault that occurs when upcalls

are disabled causes the destruction of the current activation.

5. Implementation

5.1. Organization

The Psyche implementation is highly machine independent, and should port easily to

different types of shared-memory multiprocessors. To accommodate large-scale parallel com-

puting we have adopted a model of memory that includes non-uniform access times. A

Psyche host machine is assumed to consist of clusters, each of which comprises processors

and memories with identical locality characteristics. A Sequent or Encore machine consists

of a single cluster. On a Butterfly, each node is a cluster unto itself. The proposed Encore

Ultramax [27] would consist of several non-trivial clusters. Scheduling and memory-

management data structures are allocated in the kernel on a per-cluster basis.

For the sake of scalability, each cluster contains a separate copy of the bulk of the ker-

nel code. Kernel functions are performed locally whenever possible. The only exceptions are

device managers (which must be located where interrupts occur) and certain of the virtual

memory daemons (which consume fewer resources when run on a "regional" basis). To com-

municate between processors, both within and between clusters, the implementation makes

extensive use of shared memory in the kernel. Ready lists, for example, are manipulated

remotely in order to implement protected invocations. The alternative, a message-passing

scheme in which instances of the kernel would be asked to perform the manipulations them-

selves, was rejected as overly expensive. Most modifications to remote data structures can be

performed asynchronously - the remote kernel will notice them the next time it reads the

data. Synchronous inter-kernel interrupts are used for I/O, TLB shootdown, and insertion of
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high-priority processes in ready queues.

Since each instance of the kernel must be able to interact with each other instance,

scalability dictates that a great deal of address space be devoted to kernel data structures.

Since the kernel also shares data structures with the user, the entire Psyche uniform address

space must be visible to the kernel as well. No available machine provides enough address

space for both of these needs. Psyche therefore employs a two-address-space kernel orgari-

zation (see figure 5). The code and data of the local kernel instance are mapped into the

same locations in both address spaces, permitting easy address space changes. The

user/kernel address space also contains all of user space, and the kernel/kernel address space

contains the data of every kernel instance. Local data appears at two different locations in

the kerneVkernel space. A typical kernel call works in the user/kernel space until it has

finished examining user information, then transfers to the kernel/kernel space to obtain

access to kernel data on other clusters.

In practice, few data structures are private to a single processor. Most are at least

cluster global. In fact, the cases in which a processor enjoys exclusive access to a data struc-

ture are so few that we have opted to allow activations to be preempted while executing in

the kernel. The same synchronization mechanisms that prevent conflicting accesses from

other processors also prevent conflicting accesses by other activations on the same processor.

Spin locks (our most widely-used synchronization mechanism) disable preemption in order to

ensure that the operation they protect completes quickly.

USER/KERNEL ADDRESS SPACE KERNEL/KERNEL ADDRESS SPACE

........... . Local kernel code and data -- (

Psyche uniform address space

/
............ /

Remote kernel data - ...........

Figure 5: Kernel address spaces
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5.2. Memory management

The largest and most sophisticated portion of the kernel is devoted to memory manage-

ment [14], comprising four distinct abstraction layers. The lowest (NUMA) layer provides an

encapsulation of physical page frames and tables. The second (UMA) layer provides the illu-

sion of uniform memory access times through page replication and migration. The third

(VUMA) layer provides a default pager for backing store and a mechanism for user-level

pagers. The final (PUMA) layer implements Psyche protection domains and upcalls. Page

faults may indicate events of interest to any of the layers; they percolate upward until han-

dled.

The PUMA layer maintains a mapping (currently a splay tree) that allows it to identify

the realm that contains a given virtual address. This mapping is consulted when a page fault
propagates to the PUMA layer, and allows the kernel to determine whether an attempt to

touch an inaccessible realm constitutes an error, an open, or a protected invocation. The

UMA layer is strictly divided between policy and mechanism. It is not yet clear how best to

decide when to replicate and migrate pages, and this division facilitates experiments. There

is no notion of location attached to a realm; the placement of its pages is under the complete

control of UMA-layer policies. High-quality policies are likely to depend on the judicious use

of hints from user-level software.

5.3. Address Space Limitations

Like most modern microprocessor-based machines, the Butterfly Plus employs 32-bit

virtual addresses (using the Motorola 68851 memory management unit). The resulting 4

Gigabyte address space is too small to contain all applications. We expect the 32-bit limit to

be lifted by emerging architectures. In the meantime, we have devised techniques to econom-

ize on virtual addresses.

The make-realm kernel call currently accepts a parameter that specifies whether the

new realm will be normal, paranoid, or private. A paranoid realm can only be accessed

through protected invocations. A private realm can only be accessed through optimized invo-

cations, and only from a single protection domain.

The Psyche uniform address space is divided into four separate areas, two large and

two small. One small area holds the code and data of the local kernel. One large area holds

the normal realms. All paranoid realms lie on top of each other in a single small area. The
private portions of all protection domains lie on top of each other in the remaining large area.

Each paranoid realm is represented by a small (conventionally addressable) jump table in

normal space that contains information used by the kernel to remap the paranoid portion of

the address space when .rerforming a protected invocation. Thc jump table is inaccessible to

every protection domain, so every attempt to access it will cause an access fault. On every

context switch between protection domains the kernel also remaps the private portion of the

address space.

Above the level of the kernel interface, private and paranoid realms have a limited con-

ceptual impact. They constitute an up-front assertion that optimized sharing will not occur,
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which runs counter to the Psyche philosophy. They also require special mechanisms to make

them available to user-level pagers.

6. Project Status

Our implementation of Psyche is written in C++ and runs on the BBN Butterfly Plus

multiprocessor. We have completed the major portions of the kernel and are experimenting

with user-level software.

To facilitate kernel development we have implemented a remote, source-level debugger

in the style of the Topaz TeleDebug facility [20]. The front end for the debugger runs on a

Sun workstation and communicates via UDP and serial lines with a low-level debugging stub

that underlies the Psyche kernel. The low-level debugger was the first piece of the kernel to

be written, and has proven extremely valuable.

In concert with members of the computer vision and planning groups within the

department, we have undertaken a major integrated effort in the area of real-time active

vision and robotics. Our laboratory includes a custom binocular robot "head" on the end of a

PUMA robot "neck." Images from the robot's "eyes" feed into a special-purpose pipelined

image processor. Higher-level vision, planning, and robot control have been implemented on

a uniprocessor Sun, Real-time response, however, will require extensive parallelization of

these functions. The Butterfly implementation of Psyche provides the platform for this work.

Effective implementrtion of the full range of robot functions will require several different

models of parallelism, for which Psyche is ideally suited. In addition, practical experience in

the vision lab will provide feedback on the Psyche design.

Current activity in the Psyche group is focussed on

(1) Cooperation with members of the vision group to ensure that Psyche meets the needs

of real-time applications.

(2) Implementation and analysis of alternative strategies for NUMA page migration and

replication.

(3) Performance analysis and tuning.
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